Monday, 14 March 2016

Lab program 3a: Obtain the Topological ordering of vertices in a given digraph.

Topological sort is an ordering of the vertices in a directed acyclic graph, such that, if there is a path from u to v, then v appears after u in the ordering.
The graphs should be directed: otherwise for any edge (u,v) there would be a path from u to v and also from v to u, and hence they cannot be ordered.
The graphs should be acyclic: otherwise for any two vertices u and v on a cycle u would precede v and v would precede u.

Using Source Removal algorithm:

  1. Compute the indegrees of all vertices
  2. Find a vertex U with indegree 0 and print it (store it in the ordering)
  3. If there is no such vertex then there is a cycle and the vertices cannot be ordered. Stop.
  4. Remove U and all its edges (U,V) from the graph.
  5. Update the indegrees of the remaining vertices.
  6. Repeat steps 2 through 4 while there are vertices to be processed.

Solution:
  #include<stdio.h>
   int temp[10],k=0;
  
void topo(int n,int indegree[10],int a[10][10])
   {
   int i,j;
   for(i=1;i<=n;i++)
     {
               if(indegree[i]==0)
                {
                indegree[i]=1;
                  temp[++k]=i;
                        for(j=1;j<=n;j++)
                           {
                            if(a[i][j]==1&&indegree[j]!=-1)
                             indegree[j]--;
                           }
                           i=0;
                  }
       }
   }

  void main()
   {
   int i,j,n,indegree[10],a[10][10];
   printf("enter the number of vertices:");
   scanf("%d",&n);
   for(i=1;i<=n;i++)
   indegree[i]=0;

   printf("\n enter the adjacency matrix\n");
   for(i=1;i<=n;i++)
   for(j=1;j<=n;j++)
   {
      scanf("%d",&a[i][j]);
      if(a[i][j]==1)
      indegree[j]++;
   }

   topo(n,indegree,a);

   if(k!=n)
   printf("topological ordering is not possible\n");
 
else
   {
      printf("\n topological ordering is :\n");
      for(i=1;i<=k;i++)
      printf("v%d\t",temp[i]);
    }
  }















Using DFS algorithm:

  1. Run DFS(G), computing finish time for each vertex
  2. As each vertex is finished, insert it onto the front of a list

Solution:

#include<stdio.h>
int i,visit[20],n,adj[20][20],s,topo_order[10];

void dfs(int v)
{
  int w;
  visit[v]=1;
  for(w=1;w<=n;w++)
    if((adj[v][w]==1) && (visit[w]==0))
      dfs(w);
  topo_order[i--]=v;
}

void main()
{
  int v,w;
  printf("Enter the number of vertices:\n");
  scanf("%d",&n);
  printf("Enter the adjacency matrix:\n");
  for(v=1;v<=n;v++)
    for(w=1;w<=n;w++)
      scanf("%d",&adj[v][w]);
  for(v=1;v<=n;v++)
      visit[v]=0;
  i=n;
  for(v=1;v<=n;v++)
  {
   if(visit[v]==0)
      dfs(v);
  }
  printf("\nTopological sorting is:");
  for(v=1;v<=n;v++)
     printf("v%d ",topo_order[v]);
}
  
OUTPUT 1 :

Enter the number of vertices:
5
Enter the adjacency matrix
0 0 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
Topological ordering is v1 v2 v3 v4 v5

OUTPUT 2 :
enter the number of vertices:
3
Enter the adjacency matrix
0 1 0
0 0 1
1 0 0

Topological ordering is not possible

No comments:

Post a Comment