Monday, 14 March 2016

Lab program10: Find Minimum Cost Spanning Tree of a given undirected graph using Prim’s algorithm

Description:
Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex.

Algorithm
  1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.
  2. Grow the tree by one edge: of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and transfer it to the tree.
  3. Repeat step 2 (until all vertices are in the tree).

Solution:

# include <stdio.h>

int Prim (int g[20][20], int n, int t[20][20])
{
            int u,v, min, mincost;
            int visited[20];
            int i,j,k;
            visited[1] = 1;
            for(k=2; k<=n; k++)
            visited[k] = 0 ;
            mincost = 0;
            for(k=1; k<=n-1; k++)
            {
                        min= 99;
                        u=1;
                        v=1;
                        for(i=1; i<=n; i++)
                                    if(visited[i]==1)
                                                for(j=1; j<=n; j++)
                                                            if( g[i][j] < min )
                                                            {
                                                                        min = g[i][j];
                                                                        u = i;    v = j;
                                                            }
                        t[u][v] = t[v][u] = g[u][v] ;
                        mincost = mincost + g[u][v] ;
                        visited[v] = 1;
                        printf("\n (%d, %d) = %d", u, v, t[u][v]);

                        for(i=1; i<=n; i++)
                        for(j=1; j<=n; j++)
                        if( visited[i] && visited[j] )
                        g[i][j] = g[j][i] = 99;
            }
            return(mincost);
}

void main()
{
            int n, cost[20][20], t[20][20];
            int mincost,i,j;
           
printf("\nEnter the no of nodes: ");
            scanf("%d",&n);
           
printf("Enter the cost matrix:\n");
            for(i=1; i<=n; i++)
            for(j=1;j<=n;j++)
             {
                        scanf("%d",&cost[i][j]);
                        if(cost[i][j]==0)
                        cost[i][j]=99;
             }
           
for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
           
                        t[i][j] = 99;
            printf("\nThe order of Insertion of edges:");
            mincost = Prim (cost,n,t);
            printf("\nMinimum cost = %d\n\n", mincost);
}








OUTPUT 1 :
Enter How many nodes : 5
enter the cost matrix
0 11 9  7   8
11 0 15 14 13
9 15 0 12  14
7 14 12 0  6
8 13 14 6  0
The order of Insertion of edges :

 (1, 4) = 7
 (4, 5) = 6
 (1, 3) = 9
 (1, 2) = 11

 Minimum cost = 33

OUTPUT  2:
enter How many nodes : 3
enter the cost matrix
0 6 1
6 0 10
1 10 0
 The order of Insertion of edges :

 (1, 3) = 1
 (1, 2) = 6


 Minimum cost = 7

No comments:

Post a Comment