Monday, 14 March 2016

Lab program 3b. Compute the transitive closure of a given directed graph using Warshall's algorithm.

Description
Suppose we have a directed graph G = (VE). It's useful to know, given a pair of vertices u and w, whether there is a path from u to w in the graph. A nice way to store this information is to construct another graph, call it G* = (VE*), such that there is an edge (uw) in G* if and only if there is a path from u to w in G. This graph is called the transitive closure of G.
Let n be the size of V. For k in 0..n, let t(k) be an adjacency matrix such that, if there is a path in G from any vertex i to any other vertex j going only through vertices in { 1, 2,..., k }, then t(k)[i,j] = True, False otherwise.
This set { 1, 2, ..., k } contains the intermediate vertices along the path from one vertex to another. This set is empty when k=0, so our previous definition of t(0) is still valid. When k=n, this is the set of all vertices, so t(n)[i,j] is True if and only if there is a path from i to j through any vertex. Thus t(n) is the adjacency matrix for the transitive closure of G.
The transitive closure is calculated using the formula for k >= 1:
t(k)[i,j] = t(k-1)[i,j] OR (t(k-1)[i,k] AND t(k-1)[k,j])

Solution:

#include<stdio.h>
void wars();
int a[20][20],n,i,j,k;

void main()
{
            printf("ENTER THE NO OF NODES");
            scanf("%d",&n);
            printf("ENTER THE ADJECENCY MATRIX\n");

            for(i=0;i<n;i++)
            {
                        for(j=0;j<n;j++)
                        {
                                    scanf("%d",&a[i][j]);
                        }

            }

            wars();
}

void wars()
{
            int k;
            for(k=0;k<n;k++)
            for(i=0;i<n;i++)
            for(j=0;j<n;j++)
            a[i][j]=(a[i][k]&&a[k][j])||a[i][j];
            printf("THE TRANSITIVE MATRIX IS\n");
            for(i=0;i<n;i++)
            {
                        for(j=0;j<n;j++)
                        {
                                    printf("%d\t",a[i][j]);
                        }
                        printf("\n");
            }
            return;
}


OUTPUT :

ENTER THE NO OF NODES4
ENTER THE ADJECENCY MATRIX
0 1 0 0
0 0 0 1
0 0 0 0
1 0 1 0
THE TRANSITIVE MATRIX IS
1       1       1       1
1       1       1       1
0       0       0       0

1       1       1       1

No comments:

Post a Comment