Monday, 14 March 2016

Lab program 6: Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.

Description:
Kruskal's algorithm is a minimum-spanning-tree algorithm which finds an edge of the least possible weight that connects any two trees in the forest.

Algorithm
Let G = (V, E) be the given graph, with | V| = n
        {
            Start with a graph T = (V,â±·) consisting of only the
            vertices of G and no edges; /* This can be viewed as n
            connected components, each vertex being one connected component */
            Arrange E in the order of increasing costs;
            for (i = 1, i≤n - 1, i + +)
           {
Select the next smallest cost edge;
               if the edge connects two different connected components
                    add the edge to T;
           }
    } 
 Solution:

#include<stdio.h>
int parent[20],min,mincost=0,ne=1,n,cost[20][20];
int a,b,i,j,u,v;

void main()
{
              printf("Enter the no of nodes\n");
              scanf("%d",&n);

              printf("Enter the cost matrix\n");
              for(i=1;i<=n;i++)
                         for(j=1;j<=n;j++)
                         {
                                    scanf("%d",&cost[i][j]);
                                    if(cost[i][j]==0)
                                    cost[i][j]=99;
                         }


              while(ne <n)
              {
                         for(i=1,min=99;i<=n;i++)
                                    for(j=1;j<=n;j++)

                                                if(cost[i][j] < min)
                                                {
                                                              min=cost[i][j];
                                                                          a=u=i;
                                                                          b=v=j;
                                                }

                         while(parent[u])
                         u=parent[u];

                         while(parent[v])
                                    v=parent[v];

                                     if(u!=v)
                                     {
                                                printf("%d\t edge \t (%d,%d)=%d\n",ne++,a,b,min);
                                                mincost+=min;
                                                parent[v]=u;
                                     }
                                     cost[a][b]=cost[b][a]=99;
              }

              printf("The minimum cost=%d\n",mincost);
}

















OUTPUT 1:

Enter the no of nodes
            7
Enter the cost matrix
0 28 99 99 99 10 99
28 0 16 99 99 99 14
99 16 99 12 99 99 99
99 99 12 0 22 99 18
99 99 99 22 0 25 24
10 99 99 99 25 0 99
99 14 99 18 24 99 0
1        edge    (1,6)=10
2        edge    (3,4)=12
3        edge    (2,7)=14
4        edge    (2,3)=16
5        edge    (4,5)=22
6        edge    (5,6)=25
The minimum cost=99


OUTPUT 2

Enter the no of nodes
     3
Enter the cost matrix
             0  10 1
             10 0  6
              1 6  0
1        edge    (1,3)=1
2        edge    (2,3)=6

The minimum cost=7

No comments:

Post a Comment