Monday, 14 March 2016

Lab program 8: Find a subset of a given set S = {sl, s2,.....,sn} of n positive integers whose sum is equal to a given positive integer d. For example, if S= {1, 2, 5, 6, 8} and d = 9 there are two solutions{1,2,6}and{1,8}.A suitable message is to be displayed if the given problem instance doesn't have a solution.

Description:
Subset sum problem is to find subset of elements that are selected from a given set whose sum adds up to a given number K. We are considering the set contains non-negative values. It is assumed that the input set is unique (no duplicates are presented).

One way to find subsets that sum to K is to consider all possible subsets. A power set contains all those subsets generated from a given set. The size of such a power set is 2N.

Algorithm
if(subset is satisfying the constraint)
    print the subset
    exclude the current element and consider next element
else
    generate the nodes of present level along breadth of tree and
    recur for next levels

 Solution:

#include<stdio.h>
int d;
void sum(int,int,int[]);
void main()
{
            int n,w[100],i;
            clrscr();
            printf("Enter the no of objects\n");
            scanf("%d",&n);

            printf("Enter the elements in increasing order\n");
            for(i=1;i<=n;i++)
                        scanf("%d",&w[i]);
            printf("Enter the maximum capacity\n");
            scanf("%d",&d);
            sum(n,d,w);
}


void sum(int n,int d,int w[])
{
            int x[100],s,k,i,found=0;
            for(i=1;i<=n;i++)
                        x[i]=0;
            s=0;
            k=1;
            x[k]=1;
            while(1)
            {
                        if(k <= n && x[k]==1)
                        {
                                    if(s+w[k] == d)
                                    {
                                    found=1;
                                                printf("The solution is\n");
                                                for(i=1;i<=n;i++)
                                                {
                                                            if(x[i]==1)
                                                            printf("%d\t",w[i]);
                                                }
                                                printf("\n");
                                                x[k]=0;
                                    }

                                    else if(s+w[k] < d)
                                                            s+=w[k];
                                    else
                                    {
                                                x[k]=0;
                                    }
                        }
                        else
                        {
                                    k--;
                                    while(k>0 && x[k]==0)
                                                 k--;

                                    if(k<=0)
                                    {

                                                break;

                                    }
                                    x[k]=0;
                                    s=s-w[k];
                        }
                        k=k+1;
                        x[k]=1;
  }
  if(!found)
  printf("no solution\n");
}

OUTPUT :

Enter the no of objects
5
Enter the elements in increasing order
1 2 3 4 5
Enter the maximum capacity
5
The solution is
1       4
The solution is
2       3
The solution is

5

No comments:

Post a Comment